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J.  Phys. A: Math. Gen. 19 (1986) 1985-2001. Printed in Great Britain 

Mandelbrot sets for pairs of affine transformations in the plane 

Edward R Vrscay 
School of Mathematics, Georgia Institute of Technology, Atlanta, C A  30332, USA 

Received 14 October 1985 

Abstract. For a contractive matrix transformation A : R 2  -f R 2 ,  A = a,,, a,, E R, the set of 
points A = {(*I * A A* i A3 * . . . )e  for all sequences of + and -}, where e = (1, O)T, is a 
unique attractor of generally fractional Hausdort7 dimension. The Mandelbrot set associ- 
ated with this system is defined as D = {a, ,  E R4: A is contractive, A is disconnected}. The 
structure of D and its boundary is investigated. Computer approximations of various 
sections of D are presented with a discussion of the algorithm and principles involved. 

1. Introduction 

One of the most fascinating structures to emerge from the study of iteration of complex 
mappings has been the Mandelbrot or M set (Mandelbrot 1980, 1982, 1983). For the 
quadratic map R ( z )  = z2  - s, the M set represents the set of parameter values s E C 
(the complex field) for which the Julia set J ( R )  of R ( z )  is connected (a good review 
of Julia sets along with numerous references is given by Blanchard (1984); see also 
Brolin (1965); important concepts are presented in appendix 1). A most significant 
result of Douady and Hubbard (1982) is that the boundary of the M set of R ( z ) ,  as 
infinitely complicated as it appears under repeated magnification, is connected. The 
morphology of the M set is connected with the well known cascade of period-doubling 
bifurcations associated with R( z )  as well as with universal phenomena (Feigenbaum 
1978). Mandelbrot-like sets also appear in parameter spaces associated with Newton's 
method (Curry et a1 1983) and its generalisations (Vrscay 1986). We finally mention 
an application relevant to physics: given an LRC electrical network with impedance 
function Z ( w ) ,  where w represents the AC driving frequency, one may construct a set 
of iterated networks Nk with impedances Z k ( w ) ,  k = 1, 2, 3 , .  . . , (Barnsley et a1 1985). 
Mandelbrot sets exist in regions of the parameter space L, R, C E C. For example, in 
the subspace R = C = 1, when L is allowed to vary from 1 to 3 + 23'2, the impedance 
Z " ( w )  of the infinitely iterated network N, demonstrates a cascade of bifurcations 
which eventually evolves into chaotic behaviour. 

We emphasise that the M set is a parameter space map of discrete dynamical 
systems as defined by the iteration z,+, = R(z,)  = R"(z,). Each point in this space 
represents a particular system with characteristic Julia set and attractor of typically 
fractional Hausdorfl dimension, i.e. a fractal (Mandelbrot 1982). Fractal lattices have 
been objects of vigorous research in the context of critical phenomena and percolation 
clusters. The determination of dimensionality and spectral density has been the subject 
of many papers published in this journal. 

A Mandelbrot set for pairs of complex linear maps has been investigated by Barnsley 
and Harrington (1985) (hereafter referred to as RH). They studied the attractors 
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associated with the one-(complex)-parameter iterated function system ( JFS) (Barnsley 
and Demko 1985, see also appendix 1) {C,  T+, T-}, where 

T+( z) = sz + 1 T - ( z ) = s z - l .  (1.1) 

A ( s )  = *l* s * s2* s3*. . . (1.2) 

The attractor for this IFS is given by 

for all sequences of +, -. 
The Mandelbrot set for this IFS is defined as the region in complex parameter space 
D = (s E C :  Is1 < 1, A ( s )  is disconnected}. The boundary of the set appears to be fractal 
like; whether or not it is connected is still an open question, however. 

In this paper we examine attractors and Mandelbrot sets associated with a generali- 
sation of the IFS in (1.1): a four-real-parameter set of affine transformations { R 2 ,  s+, X}, 

(1.3) 

The matrix transformation A in (1.3) produces a rotation-shear scaling, where circles 
are mapped into ellipses, as opposed to the rotation-similitude transformation associ- 
ated with complex multiplication in (1.1). It will be convenient to parametrise the aV 
in terms of scaling factors and shear and rotation angles. In 0 2, we examine the 
attractors associated with this IFS and also develop formulae for the dilatation factors 
in terms of the above parameters. In P 3, bounds for the regions which contain the 
boundary aD of the Mandelbrot set are obtained. Some computer approximations of 
Mandelbrot sets are presented. Appendix 1 presents some fundamental concepts of 
IFS theory as well as its importance and applications in the study of fractal systems. 
The subject of Julia sets as attractors of IFS is also discussed. The maximum and 
minimum dilatation factors associated with the affine map A in (1.3) are derived in 
appendix 2 as well as the general evolution of ellipses under this map. Appendix 3 
outlines the algorithm employed to determine whether an attractor for this IFS is 
connected or not. 

2. The shear IFS and its attractors 

The action of the transformation A in (1.3) on a unit square in R2 is illustrated in 
figures l(a)-(c).  It will be convenient to adopt other parametrisations of A as shown 

Y 

1 I--- 
L 

Y 

Figure 1. Action of the matrix transformation A in (1.3) and (2.1) on the unit square in 
( a ) :  ( b )  polar parametrisation, ( c )  Cartesian parametrisation. 
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in figure l ( b ) - ( c ) :  either in the Cartesian form (r,, r,, s,, s,,) E R4, or in polar form 
( r ,  8, s, 4) E (R+ ,  a)', where @ = [0,27r].  Both forms will be used interchangeably and 
will be represented by the single notation ( r ,  s ) .  In these parametrisations, A assumes 
the forms 

( 2 . 1 ~ )  
A = [  s cos 4 r cos(s+m)] 

s s i n 4  rs in(O+4) 

s, s-'( s,r, - s,,r,,) = [  sy s-'(s,r,, - syrx) 
( 2 . l b )  

In the polar form, 4 represents a rotation angle and 8 a shear angle. The IFS of 
Barnsley and Harrington (1985) (henceforth BH IFS) corresponds to the special case 
8 = r / 2 ,  r = s. The formulae developed below reduce to those of BH for these special 
parameter values. Finally, let us also mention that the case a,, = 0 in (1.3) is of special 
importance in the fractal interpolation scheme of Barnsley (1986). 

If we start with any point in the xy plane and calculate the limits of all possible 
sequences of the two maps in (2.1) then, subject to restrictions on ( r ,  s )  discussed 
below, we obtain an attractor A(r, s) of the IFS {R', S+, S- } .  It may thus be written as 

1 .  

A( r, s )  = (*I * A *  A2 f A3 f . . .)e (2.2) 

for all possible sequences of + and -, where e = (1 ,  O)T and I denotes the identity 
matrix. Attractors corresponding to several values of the parameters ( r ,  s )  are presented 
in figures 2-7. The attractor in figure 2 corresponds to s = ( 1  +i)/2 in (1.2) whose 
boundary is the dragon curve of Davis and Knuth (1970). 

Figure 2. Attractor of IFS in (2.2) for e =  r / 2 ,  +=?r/4, r = s =  I/&. The attractor 
boundary is the dragon curve of Davis and Knuth (1970). The attractor tiles the xy plane. 

The IFS (R2 ,  S+, S - )  is hyperbolic (or contractiue, cf appendix 1 )  if and only if there 
is a real constant 0s s c 1 such that 

IS&-) - Su(g)l< slf-gl a€{+,-} foral l f ;gER2 (2.3) 
where I I denotes the Euclidean metric in RZ. Some important properties concerning 
the attractor follow from this condition: 

(a) A(r, s )  is independent of the initial point (xo, yo)  used in (1 .3) ,  
(b) A(r, s )  is unique, 
(c) S+(A) U S-(A) =A.  
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Figure 3. Attractor for 8 = 7r/2, I#I = ~ / 4 ,  r = s = 0.65. 

Figure 4. Attractor for 8 = 1.3090 (75"), I#I = 0.6981 (40"), r = s = 0.8. 

Figure 5. Attractor for 0 = 1.3090 (75"), I#I = -0.6981 (-40"), r = s = 0.6. 
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Figure 6. Attractor for 0 = 1.2217 (70"), C$ = 1.2217 (70"), r = s = 0.78. 

Figure 7. Attractor for 0 = 1.3963 (SO"), C$ = 0.1745 (lo"), r = 0.6, s = 0.7. 

Figure 8. Ellipse produced by action of matrix transformation A in (1.3) on the unit circle 
xZ+yZ= 1. 

Other technical aspects regarding the balanced measure which is supported on A( r, s) 
will not be discussed here. 

In order to determine the conditions for hyperbolicity of this IFS, we consider the 
non-isotropic dilatation associated with the transformation A in (1.3). The action of 
A on the unit circle C produces an ellipse, as shown in figure 8. The major and minor 
axes of the ellipse correspond to the maximum and minimum dilatation factors, which 
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we denote as smax and smin, respectively. These parameters will satisfy the following 
relation: 

s m i n l f - g l  I ~ w ( f )  - L(g)l  smaxlf -gl  (T E {+, -}. (2.4) 

s,,,= 2 - i / 2 [ r 2 + s 2 i ( r 4 + s 4 + 2 r 2 ~ 2  COS 2e)1/2]1/2. (2.5) 

In terms of the parameters of (2.la), we have 

These formulae are derived in appendix 2 and are also given in terms of the original 
matrix elements a,. They will be important in the estimation of the location of the 
boundary of the D set in 0 3 .  

The hyperbolicity condition thus dictates that s,,, < 1. (For the BH IFS, where r = s 
and 6 = 7/2 ,  smaX = smin = s. Contractivity requires that s < 1.) 

The fixed points of the transformations in (1.3), given by S+(f+) =f+ and S-(f-) =f- 
are found to be 

1 1 - a22  

[;],=*detA-TrA+l[ a,, 1' 
The construction of the attractor by our IFS in (1.3) is seen to be a succession of 
rotation-shear scalings of the plane about these two fixed points. 

There also exists a set of two-cycles, t, and r- which satisfies the relations S+( t + )  = 
t - ,  S - ( t - )  = t i .  These points are given by 

1 1 + a22 

[ ~ ~ ] + = * d e t A + T r A + l [  -a21 1. (2.7) 

A comparison with (2.6) reveals that the two-cycles associated with A are the fixed 
points for -A. 

In the coordinate space R2,  the attractors A( r, s)  are symmetric with respect to the 
point (0,O). In parameter space, A(r, s)  = A(-r, -s) .  Some special cases of attractors 
are considered below. 

(a) If s,, = ry = 0 so that s = Is,/, r = lrx/ ,  then the contribution to (2.2) becomes 

A( r, s) = 
* s i  SI*...) =(A!)) 

where A(s) denotes the BH attractor of (1.2) for S E  R+.  Thus A(r, s)  lies on the x 
axis. From hyperbolicity, s < l ,  and A ( s ) ~ [ - l / ( l - s ) ,  l / ( l - s ) ] .  If O < s < f ,  then 
A(s) is a dissection Cantor set obtained from this interval by deleting middle (1 - 2s)th 
parts of any interval at each stage of construction. For s = i, the result is the classical 
ternary Cantor set. (The reader may also envision the Cantor sets produced when S+ 
and S- have different dilatation factors, say s+ # s-.) 

(b) If r, = s, = 0, etc, then the contributions to (2.2) factorise, 

*l*rs*r2s2** . ] = [ A(rs) ]  
s ( * l * r s * r 2 s 2 * * * * )  sA(rs) 

A( r, s)  = 

The attractor is a Cartesian product of BH attractors which lie on the x and y axes. 
(c) If s ,=r ,=O,  then A(r ,s)=(*l ,sA(r))T.  
(d) If sy = r, = 0, then A(r, s) = (A(s), O)T, as in (a). 
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3. The Mandelbrot set D and its boundary 

The attractor A( r, s )  is either disconnected or connected and generally has a fractional 
Hausdoe  dimension, i.e. it is a fractal, as defined by Mandelbrot (1982). The 
attractors of figures 2-5 are connected and those of figures 6 and 7 are disconnected. 
The attractors in figures 3 and 4 appear to lie near the borderline of connectedness. 

We define the Mandelbrot set D of the IFS {R2,  S,, S-} as 

D = {( r, s )  E R2 x R2: s,,, < 1, A(r,  s )  is disconnected}. (3.1) 
(Again the Cartesian parametrisation will be generally understood, although we feel 
free to switch to polar form.) The boundary of 0, aD, separates the regions of 
four-dimensional parameter space (r,  s )  in which the attractors A( r, s )  are connected 
and disconnected. The regions near aD are interesting from both the aspect of the 
complicated nature of aD itself as well as the nature of the attractors corresponding 
to these parameter values. In this region, A(r,  s )  becomes more and more tree-like, 
i.e. 'barely connected'. Figures 3, 4 and 6 present attractors which correspond to 
parameter values (r,  s )  near aD. 

Some bounds on the location of aD may be found. A proof of the following 
procedure is given in theorem 8 of Bamsley and Demko (1985). Suppose that A(r,  s )  
is disconnected, i.e. its Hausdoe-Besicovitch (HB) dimension, pl(A), is less than 1. 
In fact, p* is bounded by 

min{2,1} s p * ( A )  d U (3.2) 

where 1 = log i/log(smin) and U =log $/log(smax). Thus p*(A) s 1 is ensured if U < 1, 
i.e. A(r,  s )  is totally disconnected if s, , ,<f.  If I >  2, then our original supposition 
that A(r,  s )  is disconnected is false. Hence A(r,  s )  is connected for smi,< 2-1'2. The 
boundary aD is thus contained in the four-dimensional region given by 

~ = { ( r ,  s): ~<S,, ,<I,  smin<2-'l2}. 

We now wish to generate and examine some pictorial representations of the set 0, 
restricting ourselves to two-dimensional slices of the parameter space. The following 
property provides a practical method of determining whether a given attractor A( r, s )  
is connected or not: 

if T+(A)  n T-(A)  = 0, then A is totally disconnected; 
if T+(A)  n T-(A)  # 0, then A is connected. 

The proof of these statements is given in BH. A method of constructing computer 
approximations to D based on the above is outlined in appendix 3. We mention here 
that the method is a generalisation of a technique developed by Hardin (1985) to study 
the Mandelbrot set associated with the IFS { C, sz+ 1, s*z - l) ,  where s E C It differs 
from the algorithm employed by Bamsley and Harrington (1985) although both 
methods are based on the intersection properties given above. 

Case 1 .  r = s with shear angle Os 8 s 7r. The dilatation factors are given by s,,, = 
s(1 + lcos @[)'I2,  smin = s( 1 - lcos where s = (s:+ s;)'l2. The boundary aD lies 
within the annulus f( 1 + lcos 8\)-'/' < s < min{[2( 1 - lcos ~9/)]- ' /~ ,  [ 1 + (cos 81]-1/2}. 
Computer approximations to the D set in the (sx, s,,) subspace for 8 = ~ / 2  (the BH 
IFS), 57/12, 7r/3 and 6 = ~ / 4  are presented in figures 9-12, respectively. The squares 
enclose the plane region (sx, s,,) E [-1,1] x [-1,1]. As 8 decreases, more and more of 
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Figure 9. A computer approximation to the Mandelbrot D set for the set of affine maps 
in (1.3) and (2.1): the region of parameter space (5x, S ~ ) E [ - ~ ,  I ]x[ - l ,  13 for which the 
attractor is disconnected. Here, r = s with shear angle 6 = 7r/2. 

Figure 10. The D set in (5x, s, ) space for 6 = S T /  12. 

the D set is bounded by the circle s,,, < 1, the boundary of hyperbolicity. This implies 
that more attractors of the hyperbolic IFS become disconnected as f3 decreases. 

The two cases 0 = 0 and f3 = 7r (not pictured here) are degenerate-the attractor A 
consists of two parallel lines passing through the fixed points (x, y )  = * ( a (  1 - s,,), as,,), 
where a = (1 - s, - s,)-', with slopes s,,/s,. In both cases, the Mandelbrot set consists 
of the cut disc, 

When s,=O and ~ ~ s = ~ s , / < l / & ! ,  the attractor A is located in the interval 
[ - l / ( l - s ) ,  l / ( l - s ) ]  on the x axis. 
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I _ -  
A 

Figure 11. The D set in (sx, s,) space for 8 = ~ / 3 .  

1993 

Figure 12. The D set in (sx, s,) space for 0 = ~ / 4 .  

Case 2. r = as, 0 < a < 1, with shear angle 8. From appendix 2 ,  the major and minor 
dilatation factors are given by 

S 
smax=-[( 1 + a’) * (1 + (y4+2a2 COS 2e)1/2]1/2,  

min ~5 

The inner and outer radii of the annulus containing aD may be computed from these 
factors. Computer approximations to D in the parameter subspace (sx, s y )  E 

[-1, l ] x  [-1, 11 for a =0.9, 0.85 and 0.8 are presented in figures 13-15, respectively. 

4. Concluding remarks 

Affine maps of the form (1.3) are rotation-shear scaling (plus translation) transforma- 
tions whose maximum and minimum dilatation factors may be explicitly computed. 
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In en 

Figure 13. The D set in (5=, s,) space: r = 0.90s, 0 = ~ / 2 .  

Figure 14. The D set in (s, s y )  space: r = 0.85s, 0 = n/2.  

ral, the attractors of such iterated function systems are fractals and are ither 
connected or disconnected. The Mandelbrot set for such an IFS may be defined as the 
region in parameter space for which the IFS is hyperbolic and the attractor is discon- 
nected. The boundary of this set reveals classic fractal-like patterns. 
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Figure 15. The D set in (sx, s y )  space: r = 0.80s, 0 = n/2. 

Appendix 1. Some remarks on iterated function systems and Julia sets 

In this section we briefly outline the important concepts of an iterated function system 
(IFS) as developed by Barnsley and Demko (1984).  Some connections between IFS 
and Julia sets are made at the end. 

Let K be a compact metric space with distance function d ( x ,  y )  for x, y E K, and 
w = ( w , ,  w 2 , .  . . w d ]  be a finite collection of functions wi : K + K. Here we shall limit 
our discussion to wi continuous in K. Now treat w as a set-valued function w ( x )  : K + K, 
and consider the action of its iterates { ~ " ( x ) } ? ,  where 

WO( x )  = x w " ( x )  = w ( w " - ' ( x ) )  n = l , 2 , 3  ,.... 
Thus, the set defined by w " ( x )  consists of d" values, given by the compositions 
w,, wr2 . . . wvn ( x ) ,  for all possible sequences mi E { 1,2 ,  . . . d } ,  i = 1,2 ,  . . . n. The attractor 
A ( x )  corresponding to the above sequence for a given x E K is defined as 

A ( x )  = lim w " ( x ) .  
n-m 

If A ( x )  is independent of x, then it is simply referred to as A ,  the attractor of the IFS 
( K ,  w } .  It is compact and invariant under w, i.e. w(A)  = A. 

The IFS {K, w }  is defined as hyperbolic if there exists a constant 0 s  s < 1 such that 

d (  w , ( x ) ,  w , ( y ) )  s d ( x ,  y )  V x ,  y E K, i = 1,2, . . . d. 

In this case, the following important properties exist: 
(a) A ( x )  is independent of x, i.e. A ( x )  = A, 
(b) A is unique, 
(c) A = U;=, % ( A ) .  

On a computer, the unique attractor for a hyperbolic IFS may be generated for 
display in two ways. 

( i )  For a finite number of generations, say N, pick a starting point xa E K ( K  will 
usually be R 2  or C) and calculate all possible d N  points in the set w N ( x o ) .  This 
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amounts to calculating all compositions in (Al.1).  The recursive procedure of the 
PASCAL computer language can be exploited here to obtain a reasonably symmetric 
picture of the attractor. The attractors of figures 2-7 were constructed in this way, 
with N -  14. 

(ii) Let p = { p I , p 2 , .  . . p d }  represent a set of probabilities with each p , > O  and 
Xp, = 1 .  Starting at xo E K, calculate the sequence x,+~ = wvn(x,), U, E { 1 , 2 , .  . . d } ,  
where, at each step, a probability of p ,  is associated with the selection of U,. Almost 
always, the random walk sequence (x,} ‘settles’ onto the attractor A and wanders over 
it. Thus, plotting the sequence {x, : m = M, M +  1, . . . N }  where, for example, M = 50 
or 100 and N = 5000 or 10 000, yields representations of A quite rapidly. The method 
is also easily programmable. 

The IFS is an effective and informative, albeit mathematically useful, method of 
constructing fractals and other self-similar systems (Bamsley and Demko 1985, Barnsley 
et a1 1985). It replaces their algorithmic construction (with ‘generators’, see Mandelbrot 
(1982), for example) with a global procedure involving transformations in a 
metric space. Moreover, a moment theory of IFS also exists to provide a systematic 
basis for the inverse problem, i.e. given a system, determine the IFS whose attractor 
best approximates the system. 

As an example, consider the IFS {C, wl, w2}, where w,(z)=sz, w2(z)= 
s(z - 1 )  + 1,  s < 1 are contractions about the points z = 0 and z = 1,  respectively. The 
reader may verify that the attractor A must lie in the interval [0, 11. By examining the 
action of the w, on this interval for s = f ,  one may conclude that A is the classical 
ternary Cantor set. A similar analysis shows that the IFS {C,  w,, w2, w,}, where 

w,=s,(z-a*)+ a, SI =f, a, E c i = 1,2 ,3 ,  a, non-collinear ( A l . l )  

admits the famous Sierpinski gasket (Rammal 1983, Domany et a1 1983) as its attractor. 
A computer generated plot of A for a, constituting the vertices of an equilateral triangle 
is shown in figure 16. When s1 =$  and s2=  sj =$  in equation ( A l . l ) ,  the ‘Cantor tree’ 
of figure 17 results. The structure of this attractor is similar to the time-evolution 
patterns encountered in cellular automata (Wolfram 1984). The modified Sierpinski 

Figure 16. The Sierpinski gasket, an attractor for an iterated system of three contractive 
maps. 
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Figure 17. A Cantor tree. 

gasket of figure 18 (Hilfer and Blumen 1984) is the attractor of the IFS {C, wi, i = 
1,2 , .  . . 6 } ,  where the wi are given in (Al . l ) ,  with si = f and the ai lie on the vertices 
and midpoints of the sides of an equilateral triangle. 

We conclude this section by outlining the notion of Julia sets as attractors of iterated 
function systems. Let R ( z )  be a rational function R(  z) = P( z) /  Q( z) where P (  z )  and 
Q ( z )  are polynomials with complex coefficients and no common factors and d = 
deg(R) = max(deg(P), deg(Q))S  2. The sequence of iterates { R " }  of R ( z )  is defined 
by Ro(z)  = z, R"+'(z )  = R ( R " ( z ) ) ,  n = 0 , 1 , 2 .  . . . The inverses of R ( z )  shall be denoted 
by R;'( z), where i = 1,2, . . . d enumerates all branches of the inverse. We now consider 
R :  e+ = C u  {CO} denotes the Riemann sphere with suitably defined where 

Figure 18. A generalised Sierpinski gasket. 
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spherical metric. Given a point Z,,E e, the iteration sequence {z , } : ,  where z,,~ = 
R( z , )  = Rn+l(  zo), defines the forward orbit of zo. 

If R k ( p )  = p  and R " ( p )  Z p  for m < k, then p is a j x e d  point of order k The set 
of distinct points { p i ,  i = 1,2,3,  . . . , k}, where 

PI = R ( p ) ,  p2 = R(p2)9. , P k  = R(Pk-1) 

is termed a k-cycle. If k = 1, p is simply called a fixed point of R ( z ) .  The k-cycle is 
attractive, indifferent or repulsive, depending whether the multiplier I[ Rk( p,)]' l  is less 
than, equal to or greater than one, respectively. 

is formally defined as the set of 
z E for which the family of maps R " ( z )  is not normal, in the sense of Monte1 (Ahlfors 
1979). A more working description is that J ( R )  is the closure of all repulsive k-cycles 
of R ( z ) ,  k = 1 ,2 ,3 , .  . . . Its complement, F = e\J(R),  the Fatou set, is the set of all 
z E for which the family R"(z )  is equicontinuous in the spherical metric on some 
neighbourhood of each point of F. 

The Julia set J ( R )  of the rational map R : e+ 

Some important properties of J ( R )  are listed below: 
(a) J # 0 and J is closed; 
(b) J is invariant with respect to R, i.e. R ( J )  = J = R- ' (J ) ;  
(c) J ( R ) = J ( R " ) ,  m = 2 , 3 , 4  ,...; 
(d) if J has interior points then J =  e; 
(e) J( R )  is compact and non-denumerable. In general, its Hausdorfl-Besicovitch 

dimension is non-integral, whereupon J ( R )  is a fractal, as defined by Mandelbrot 
(1982). 

A simple and illustrative example is afforded by the map R ( z )  = z2. The unit circle 
C = { z :  IzI = 1) is invariant with respect to R ( z )  and its iterates. All fixed points and 
cycles of the R " ( z ) ,  except z = 0 and z = 00, lie on C and are repulsive. C is the Julia 
set of R ( z ) .  The forward orbit of any point in the region \ z \  < 1 is the fixed point z = 0. 
The forward orbit of any point in the region IzI > 1 is the point z = 00. The Julia set 
C may be regarded as a repeller set under the action of the forward map R ( z ) .  
Equivalently, C is the attractor for the inverses R ; ' ( z )  = +&, R;'(z)  = -&. 

For the general quadratic maps R ( z )  = z 2 -  s, s E C, let w l ( z )  = +(z+ s)'", w 2 ( z )  = 
- ( z  + s ) " ~ .  The Julia set J ( R )  is the attractor for the IFS { C, wl, w2} and may be given 
by 

~ ( s )  =d(s*J(s*. . .). . .) for all sequences of +, -. 
Special cases include: (i)  J ( 0 )  = C (shown above), (ii) J ( 2 )  = [-2,2], (iii) for s > 2, 
J ( s )  is a Cantor-like set in the interval [:+(s+;)"~, i-(s+;)"2]. 

Appendix 2. Dilatation factors associated with the transformation A 

We consider the action of the matrix transformation A of (1.3) on a unit circle C 
which produces an ellipse, as illustrated in figure 8. The major and minor axes represent 
maximum and minimum dilatation factors, s,,, and smin, respectively, which enter 
into (2.5). These factors are determined below. 

Starting with the unit circle centred at the origin, repeated application of the 
transformation A produces a family of ellipses E"'(x, y )  having the general formula 

(A2.1) E'"( x, y )  = aix2 + b1x' + c,xy - 1 = 0 
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with initial conditions uo = bo = 1, co = 0. Some straightforward algebra yields the 
recursion relations, 

a,+1 = a,u:, + b,u:, + C i U l l U * 1  

bi+l = u , u : ~ +  biui2+ ciu12u22 

c i+ l=  2(aiu,lu12+ biu21~22) + ci(u11~12+ ~ 1 2 ~ 2 1 )  

(A2.2) 

where the uij are the elements of A-'. These recursion relations will be important for 
the discussion in appendix 3. 

The unit circle transforms to the ellipse E'"( x, y )  whose coefficients are 
a, = (s',r:+2s,s,r,r,+s:r2,+s2s:)s -4 r y  -2  

bi = (s:r:-2s,s,r,r,+s2,r2,+s2s',)s-'rr,' (A2.3) 

c, = 2[s,s,,(r: - r',) + rxry(s:  - s:) - ~ ~ s , s , ] s - ~ r ; ~ .  

The major and minor axes of this ellipse are determined by rotating it by an angle 
of -6 (cf figure 8). Some analytic geometry reveals that this angle is given by 
tan 25 = c l / (  6, - ul) .  The resulting ellipse is Alx2+ B , y 2  = 1, where 

A,, Bl = $ { U ,  + bl * [(a1 - bl)'+ c:]"~). 

From (A2.3), the major and minor axes are given by 

~ ~ ~ ~ = 2 - ~ / ~ [ ( r ~ + ~ ~ ) i ( ~ ~ + s ~ + 2 ~ ~ s ~  cos 2e)1/2]1/2. 

In terms of the original elements a,  of A in (1.3), these factors are given by 

min 

-1:2 

smaX=&(det A) 1 a i r  P 
min ( t J : 1  ) 

where 

(A2.4) 

(A2.5) 

(A2.6) 

Appendix 3. Algorithm for calculating the Mandelbrot set 

The method described below exploits the three properties given in appendix 1 concern- 
ing the attractor of a hyperbolic IFS. A description will be made with reference to the 
IFS of (1.3). The algorithm is not the most efficient for computer implementation as 
there are no shortcuts which exploit any geometric properties of the attractors. An 
outline of this method is useful from a pedagogical viewpoint. 

Rather than observe the action of S = { S , ,  S-}  on A, we observe their action on 
a region which contains A. The first step is to consider a circle C, of radius R, centred 
at the origin 0 (since A is symmetric with respect to 0) which encloses A. The 
practical estimation of an R value will be discussed at the end of this appendix. Now 
consider the evolution of this circle under the repeated action of S. After n generations, 
C ,  has evolved into 2" congruent ellipses, all oriented at an angle 5, with respect to 
the x axis. Their centres correspond to the 2" descendants (xi"), y ! " ) ) ,  i = 1,2, . . .2", 
of the initial point (xio), vi"') = (0,O). The equations of these ellipses are Ej"'(x - xi"', 
y - y ! " ' )  = 0, where the E'"'(x, y )  are defined in appendix 2. The major and minor 
axes of these ellipses are (sma,)" and (smin)", respectively. The first three generations 
are shown schematically in figures 19(a) and (b). 
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Figure 19. Action of the maps S ,  and S -  of (1.3) on  a circle CR which houses the entire 
attractor A: ( a )  the first generation of two ellipses, ( b )  the second generation of four ellipses. 

For each generation n, a part of the attractor A must be located inside each of the 
2” ellipses E!”),  i.e. 

2 ”  

A E  U E ~ ’ ( ~ - ~ j “ ’ , y - y j ” ’ ) .  
k=l 

We now refer to figures 19( a )  and ( b )  to outline the algorithm. Clearly, if E!” = S - (  C,) 
does not overlap ,!?$I) = S+( C,) then A is disconnected and our search may stop. The 
converse is not necessarily true, however. If the ellipses overlap, we consider the next 
generation of four ellipses which evolve from this pair. A is disconnected if 

S+(E!”)n S - ( E ~ ” )  =izi  V i ,  j c  {1,2}. 

We must check the four pairs of ellipses whose centres are connected by paths p1 to 
p4 in figure 16(b) overlap. The condition for overlap is that the midpoint of pi  lies 
within either of the ellipses connected. If no pairs overlap, then we conclude that A 
is disconnected. All pairs which overlap, however, must be further examined in the 
same way as above. The procedure amounts to exhaustively searching a tree with four 
branches at each node for overlaps to a prescribed number of generations, N, halting 
at a node whenever overlapping stops. If all paths become disconnected by the Nth  
generation, then A is assumed to be disconnected-if any overlaps remain, then A is 
assumed connected. For the D sets presented in figures 9-15, N was typically equal 
to 13. 

To estimate the radius R of the circle CR which houses the entire attractor, we 
compute 2“ descendants of (x“’, y“’) = (0, 0 ) ,  where M is typically 5 or 6, and define 

The value r is not expected to be a reasonable estimate of R since it is possible that 
an image of CR, namely the ellipse E‘”), be stored around each point (xi”), y!”)), cf 
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Figure 20. Estimation of the radius of the circle C, which houses the attractor of the affine 
IFS. 

figure 20. The assumption that its major axis is aligned with the radius vector r yields 
an upper limit to R. Thus, r +  R(sm,.JM = R or 

Of course, as M + "3, i.e. as more and more points are calculated, ( s,~,)'~ + 0, implying 
that the distance r becomes a better estimate of R. 
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